knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE )
# remotes::install_github("fishvice/tidyices", ref = "dev") library(tidydatras) # remotes::install_github("fishvice/tidydatras") library(tidyverse) library(DescTools) # e.g. winsorize function spatialdir <- "C:/DATA/RDATA" load(file.path(spatialdir, "rect.RData")) source("../../r/geo_inside.R") # suppressMessages(tidydatras:::dr_download_all(save_dir="C:/TEMP", verbose=FALSE))
Note that the dr_getdata can work with multiple surveys (a loop is inside the function)
surveys <- c("NS-IBTS") yrs <- 2020:2022 qs <- c(3) hh <- dr_getdata("HH", surveys, yrs, qs, quiet = FALSE) %>% dr_tidy() %>% # Make tidy with column specifications dr_idunite(., remove = FALSE) %>% # Add identifier left_join(reco, by=c("ship"="code")) # Add vesselname hl <- dr_getdata("HL", surveys, yrs, qs) %>% dr_tidy() %>% # Make tidy with column specifications dr_idunite(., remove = FALSE) %>% # Add identifier dr_calccpue(hh) %>% # Calculated CPUE per hour left_join(aphia_latin) %>% # Add scientific name left_join(asfis) %>% # Add FAO species names and codes left_join(reco, by=c("ship"="code")) # Add vesselname # ca <- dr_getdata("CA", surveys, yrs, qs, quiet=FALSE) %>% # dr_tidy() %>% # Make tidy with column specifications # dr_idunite(., remove = FALSE) %>% # Add identifier # dr_calccpue(hh) %>% # Calculated CPUE per hour # left_join(aphia_latin) %>% # Add scientific name # left_join(asfis) %>% # Add FAO species names and codes # left_join(reco, by=c("ship"="code")) # Add vesselname
hh |> count(survey) hl |> count(survey) ca |> count(survey)
hl |> left_join(aphia_latin) |> count(latin) ca |> left_join(aphia_latin) |> count(latin)
select_species <- "HER" select_survey <- "NS-IBTS" select_quarter <- 1 winsorize <- c(0.05, 0.95) length_step <- 0.5 df <- hl %>% filter(species == select_species) %>% filter(survey == select_survey) %>% filter(quarter == select_quarter) %>% drop_na(cpue_number_per_hour, length) %>% mutate(length=floor(1/length_step * length)/(1/length_step)) %>% {if(!is.null(winsorize)) {mutate(., cpue_number_per_hour = DescTools::Winsorize(cpue_number_per_hour, probs=winsorize))}} %>% group_by(species, latin, year, quarter, statrec, length) %>% summarise(cpue_number_per_hour = mean(cpue_number_per_hour)) %>% group_by(species, latin, year, quarter, length) %>% summarise(cpue_number_per_hour = mean(cpue_number_per_hour)) yearmean <- df %>% group_by(species, latin, quarter, length) %>% summarise(cpue_number_per_hour = mean(cpue_number_per_hour)) df %>% ggplot(aes(x=length, y=cpue_number_per_hour)) + theme_minimal() + geom_bar(data=yearmean, stat="identity", fill="gray", alpha=0.5) + geom_line() + facet_wrap(~year, strip.position = "right", dir="v", ncol=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.